
DORA, SPACE, and DevEx:
Which Framework Should
You Use?

GUIDE

DORA, SPACE, and DevEx: Which
Framework Should You Use?
Laura Tacho

Since we first published this whitepaper in 2024, thousands of engineering
leaders have used it to better understand engineering productivity metrics,
and how each of the frameworks align to their own organization’s goals. All
the while, DX has been pioneering research on developer productivity,
partnering with leading companies like Dropbox, Pfizer, and Twilio, and
SiriusXM, and publishing our findings along the way.

We consistently found that engineering leaders face many problems when
trying to implement a metrics framework: first, they need a framework that
can be implemented in a reasonable amount of time to quickly establish a
baseline in order to show progress. Secondly, they need this framework to
be simple enough to be understood by stakeholders outside of engineering,
but comprehensive and rigorous enough to be trustworthy.

To help simplify the landscape of metrics frameworks and address the real-
life challenges from engineering leaders, we’ve developed a unified
framework called the DX Core 4 that helps organizations and leaders focus
on the metrics that matter most. DX Core 4 incorporates metrics from
DORA, SPACE, and the DevEx framework into a focused set of metrics that
work effectively at any sized organization.

As such, I’ve updated this article to include an overview of the DX Core 4 and
updated my recommendations accordingly. However, I do still recommend
you read this paper in order to understand the differences between DORA,
SPACE, and DevEx, what their goals are, and how they can help your
organization. You will find that the DX Core 4 framework takes the
guesswork out of trying to pick and choose the relevant parts of these
frameworks yourself, and instead gives you a streamlined set of metrics
that’s already proven to be useful at over 300 different companies.

Page 1

https://getdx.com/research/overview/

Improving developer experience and

productivity requires clarity into where to focus

and the ability to quantify the impact of changes.

Frameworks like DORA, SPACE, and DevEx

outline different approaches to understanding

both the definition of developer productivity as

well as how to measure it.

When introducing a developer productivity

framework to your own organization, it’s

important to understand the goals of the

framework, how to collect the metrics, and the

benefits and drawbacks of using it. Most

importantly, you and your teams need to

understand and align on how the framework

should help your team.

To help guide you through the decision making

process, this article provides insight into:

 What frameworks are widely used among

software engineering organization

 Who should use each framewor

 How to implement each framewor

 What questions to consider when selecting a

developer productivity framework for your

organization.

DORA Metrics

The DevOps Research and Assessment (DORA)

metrics revolutionized the way the software

industry measures software organization

performance and delivery capabilities.

Developed with rigorous research that relied on

data from thousands of companies, DORA

introduced four key metrics that quickly became

a standard for measuring the performance of

software organizations.

The four DORA metrics are

 Lead Time to Change: time from code

commit to deploymen

 Change Failure Rate: percentage of failed

changes in the production environmen

 Deployment Frequency: how often code is

deployed to productio

 Mean Time To Recover (MTTR): how fast

teams can recover from a failure. This metric

is now called “Failed Deployment Recovery

Time”

DORA metrics answer the question “how are we

doing” but also scratch the insatiable itch of

“how are we doing compared to everyone else?”

When you assess your capabilities using DORA

metrics, you will see how your company is doing

compared to the other respondents, and this

benchmarking data is a huge attractor for users

of DORA metrics. Based on your organization’s

measurements, you will fall into one of four

categories: Elite, High, Mid, or Low Performer.

You can take the DevOps QuickCheck at https://

dora.dev/quickcheck/ to see your own results,

and see which percentile your company falls in

compared to your peers.

It’s important to understand what DORA metrics are,

but equally important is understanding when they

Page 2

https://dora.dev/quickcheck/
https://dora.dev/quickcheck/

are, as this helps contextualize their goals and

design, and will help you make a decision about their

utility in your own organization.

DORA metrics were made popular in 2018 in the

book Accelerate: Building and Scaling High

Performing Technology Organizations by Dr. Nicole

Forsgren, Gene Kim, and Jez Humble. Thinking back

to 2018, many large enterprises were in the middle of

or completing large digital transformation projects,

and they were in search of metrics that would help

them quantify their progress. It’s this landscape that

DORA metrics came out of, which is why they focus

so much on software delivery capabilities.

Who should use DORA metrics?

DORA metrics are standardized measures of

software delivery capabilities. These metrics are a

great fit for companies that:

 Are going through a digital transformation and

modernizing their software development

practices, such as by adopting DevOps practice

 Want a consistent benchmark to understand their

software delivery capabilitie

 Are building processes from scratch and need to

validate their process design and delivery

capabilities against industry benchmarks

If your organization is committed to addressing the

weaknesses highlighted by DORA metrics, then it’s

more likely that they will be helpful to you. This is

because the metrics are not just measures, but also

guidance as to how your organization should be

performing. Especially if your team falls within the

Low or Mid Performer clusters, DORA metrics will

spell out what your teams would need to achieve to

qualify as Elite, and from there, you can make a plan

of high-leverage interventions. These interventions

will improve the capabilities of your organization, and

in turn, improve developer productivity.

Page 3

How do you collect and implement

DORA metrics?

Many off-the-shelf developer tools and

developer productivity dashboards include

DORA metrics as a standard feature. These tools

work by collecting workflow data from your

developer tool stack, such as GitHub, Gitlab, Jira,

or Linear. You’ll be able to see measurements for

all four of the DORA metrics using workflow data

from these tools.

For some teams, this instrumentation is plug-

and-play, giving you DORA metrics with minimal

effort. For many other teams, there is a higher

cost with collecting these metrics. The metrics

are standardized, but the ways that teams work

certainly aren’t. That means that there is plenty

of variation when it comes to tools, processes,

and in turn, collection methods. Even defining

how and when to measure the metrics can vary

from team to team (for example, what do you

consider a “production deployment”?).

However, it’s not necessary to collect data from

your workflow tools in order to track DORA

metrics. Surveys and self-reported data are a

reliable method to collect these measurements,

and in fact, DORA metrics themselves are based

off of survey data, not automatically collected

data. Self-reported measurements may be less

precise and less frequent than measurements

collected automatically, but offer enough fidelity

to be useful for assessing capabilities, without

needing to instrument additional software.

However, you will need to administer surveys

and track responses, which may take some

effort, especially within organizations with a high

number of developers and applications.

Though each DORA metric can be measured in

isolation, it’s important to analyze them as a

collection. DORA metrics have been designed

with metrics that are in tension with each other,

providing some guardrails as teams work toward

adoption of more automation. In order to be

classified in the upper performance clusters,

teams must both deploy more frequently, but

also reduce the number of defects that reach

customers. This tension ensures that teams are

not compromising quality as they accelerate

their deployment rates.

Once you have measurements in place, it’s still

up to your organization to determine what type

of work needs to be done in order to influence

the metric. DORA is prescriptive about what to

measure, and what benchmarks you must

achieve to qualify as Elite, but does not offer a

copy-and-paste solution for how to improve.

However, the Continuous Delivery Capabilities

called out in Accelerate can give you a jumpstart

when it comes to choosing where to focus your

efforts first.

Page 4

What’s important to consider about

DORA metrics?

DORA metrics are not a measure of developer

productivity, but a measure of software delivery

capabilities. In practice, you’ll find that DORA

metrics have almost become synonymous with

developer productivity, and are often talked

about as a productivity measurement in our

industry. It’s important for you to understand the

goal of DORA metrics, why they exist, and what

contexts are appropriate for DORA metrics.

Otherwise, you run the risk of measuring the

wrong thing and getting the wrong signals about

developer productivity and developer

experience.

Another common misconception is that

qualifying as Elite means that your organization

is highly productive, or that you will perform well

as a business. It’s difficult for developers to be

productive in an environment without the

capability to rapidly iterate and deploy software,

and DORA is a helpful measure for assessing

that. But you may still be building the wrong

thing, just building it very quickly.

The SPACE Framework of
Developer Productivity

The SPACE Framework of Developer

Productivity is a holistic approach to thinking

about and measuring software developer

productivity. Unlike DORA, the SPACE

framework is not a list of metrics or benchmarks.

Instead, it outlines five different dimensions of

productivity that can inform your own definition

of productivity, and by extension, your

measurements.

The five SPACE framework dimensions ar

 Satisfaction and well-being: How satisfied

developers are with their work and working

conditions, and how healthy and happy they

are

 Performance: How well the software fulfills

its intended purpose, both from a quality

perspective, but also in terms of user impact

 Activity: A count of the actions within a

system, such as number of tests, builds, and

design documents produced by a team of

developers

 Communication and collaboration: How well

your team members communicate with each

other and work together

 Efficiency and flow: The ability of your team

to complete work with minimal interruptions

and make continuous progress.

Not only does SPACE emphasize the importance

of all five categories, it goes further to explain

that both workflow metrics (like those used in

DORA) as well as perception metrics, like how

productive a developer feels, are equally as

important when defining and measuring

developer productivity.

Page 5

Who should use the SPACE

framework?

SPACE is a broad framework that gives

developers and engineering organizational

leaders new vocabulary and mental models to

define developer productivity.

SPACE is a great choice for

 Software organization leaders who are

developing a definition of developer

productivity for their organizatio

 Teams and leaders who want to make sure

there are no gaps in their productivity

measurement

 Leaders who are looking for a better way to

get their team involved in measuring and

improving developer productivit

 Teams looking for better ways to discuss

their experiences when it comes to

productivity

SPACE may not be as useful on teams where

developers and leaders are not in a position to

improve productivity through interventions, or

for leaders who are hesitant to adopt new ways

of thinking about productivity.

How do you implement SPACE?

Since SPACE is a broad framework, all metrics

related to developer productivity – even the

“bad” ones – fit into SPACE.

Additionally, because SPACE introduces other

dimensions to consider, such as workflow vs.

perception metrics, it can be confusing to

understand how to implement SPACE on a

practical level.

“SPACE metrics” simply don’t exist, and it’s a

misconception to think that it’s possible to swap

out DORA metrics and use SPACE metrics

instead. SPACE is a framework that does not

come with a punch list of things to measure.

Instead, SPACE provides guardrails and mental

models when crafting your organization's

definition of productivity, ensuring that you don’t

overlook an important aspect of productivity

and pay the price later by damaging culture or

leading to burnout.

Using SPACE to challenge assumptions about

productivity and uncover gaps in your teams’

thinking is a great way to get started with SPACE

on your teams. An exercise to do this is to use an

online whiteboard tool and have your team

members create a sticky note for each

measurement of productivity. Then, drag each

measure into the corresponding SPACE

category.

Page 6

In the case of the team shown in the example,

this helped them see that they did not naturally

view measurements of Satisfaction and Well-

Being or Communication and Collaboration as

part of their own definition of productivity.

Many teams will discover the same, as the S and

C categories are often absent in definitions of

developer productivity. This is an area of

strength for SPACE

 If you work through an intense crunch time to

ship something, but many of your team

members experience burnout, was that

period productive

 If you complete a large project but do not

take the time to document functionality,

leading to delays in all subsequent projects

due to lack of documentation, was that

productive?

Another way to begin using SPACE is to

introduce self-perception metrics as a way to

measure developer productivity. Taking a closer

look at the metrics from the team exercise

above, we notice that all of the metrics can be

collected from developer tools. The voice and

experience of the developer, which SPACE data

shows is equally important, is absent.

If this is the case with your team, don’t worry –

it’s normal. Often, engineering leaders and

developers have a tendency to value

automatically collected metrics more than self-

reported metrics, and more than measurements

of perception, like “how satisfied are you with

our code review process?”

Page 7

But workflow measurements only tell part of the

story. Take for example two teams that both

have an average code review time of 12 hours.

For one team, this is sufficiently fast, and does

not delay work in a meaningful way. For the other

team, it feels like swimming through mud, and

the perception is that code review timing is a

huge bottleneck. We can’t see this when only

looking at the numbers, which is why SPACE

advocates for including both measurements of

perception alongside workflow measurements.

What’s important to consider about

the SPACE framework?

SPACE is a holistic and comprehensive way to

think about developer productivity. It advocates

for balance in multiple ways

 Include varied types of metrics based on

their alignment with the five SPACE

dimension

 Include a balance of workflow metrics as well

as perception metrics, as both are important

Because SPACE is a framework, it is still up to

you to define productivity, and then select

metrics that align to your definition. SPACE is a

useful tool to reduce the likelihood of omitting

important dimensions of productivity based on

the latest research.

Practice caution here. Just because a metric falls

within a SPACE category does not mean it is a

“good” metric or that it will not cause cultural

damage when introduced.

It might be the case that there is hesitancy to

adopt new ways of thinking about productivity

outlined in SPACE, particularly for organizations

and leaders that have experience with DORA

metrics. DORA is very concrete, whereas SPACE

is very abstract, and focuses equally on

developers’ experiences as it does on metrics

from tools. This might feel “squishy” to leaders

who have developed a taste for quantitative

metrics. An important consideration to keep in

mind when advocating for SPACE is that Dr.

Nicole Forsgren, the lead researcher for DORA

metrics, is also the lead researcher for the

SPACE framework. Though they measure

different things – DORA focusing on software

delivery performance and SPACE focusing on

developer productivity – the research informing

both frameworks is equally as rigorous.

One drawback of SPACE is that it can be difficult

to understand because it is so vast. It’s not

necessary for all developers in your organization

to understand SPACE even if you are introducing

a collection of metrics that were developed

using principles from SPACE, so don’t view

organization-wide understanding of SPACE as a

limiting factor to your progress.

Page 8

The DevEx Framework

Developer experience (DevEx) is a developer-

centric approach to improving developer

productivity. Instead of focusing wholly on

output or activity metrics, DevEx focuses on the

lived experiences of developers by measuring

the effectiveness of tools and processes through

the developers’ lens, and giving them a voice to

influence the factors that impact their work.

The DevEx Framework organizes many factors

of developer experience into three categories:

feedback loops, cognitive load, and flow state.

Feedback Loops: When a developer makes a

change, can they get feedback about that

change fast enough? Feedback from tooling, like

tests or a CI build, and people, like project

stakeholders, are equally as important. Slow

feedback loops can interrupt or delay the

development process.

Cognitive Load: How much stuff do developers

need to keep track of in order to complete a

task? Complex processes, as well as complex

code, can lead to high cognitive load, which

slows development down and increases friction.

Flow State: Slow feedback loops and high

cognitive load can make it hard to get into a flow

state, as well as other factors like unplanned

work and a non-optimised meeting schedule.

Flow state describes the opportunity to get into

a state of energized focus. This doesn’t just

mean having blocks of uninterrupted time, but

also systems that allow developers to become

immersed in their work by reducing friction.

Who should use the DevEx

framework?

Teams who are interested in using metrics to

improve developer productivity and

engagement will benefit most from the DevEx

framework

 Platform engineering teams who are

responsible for systems that support many

engineers can use the DevEx framework to

understand where to focus for the most

impac

 Engineering managers can use it to

understand points of friction on their team

 Engineering executives can use the DevEx

framework to understand if strategic

investments are paying off and keep a pulse

on overall engineering organization health

Page 9

Similar to DORA and SPACE, the DevEx

framework is used by all sizes of companies,

across many industries.

How do you implement the DevEx

framework?

Similar to SPACE, the DevEx framework strongly

advocates for including developers’ feedback

and experiences in definitions and assessments

of productivity. In contrast to SPACE, the DevEx

framework is more prescriptive on what to

measure, introducing DevEx KPIs, along with a

framework to identify potential areas of

measurement.

The perceptual measures outlined in the DevEx

framework are best collected through a develo-

per experience survey.

This allows you to standardize questions and

responses in order to track progress over time.

A limitation of surveys is that it is often unclear

to the respondent how – and if – their response

data will be used to noticeably increase their

own working conditions.

A countermeasure to potential disengagement

is to transparently communicate the plan for the

survey data before the survey is administered,

answering the questions

 Who will see the data

 What demographic information will be

associated with the responses

 What will we do with the data?

Page 10

For smaller teams, or for environments where

survey engagement is forecasted to be very low,

you may want to use interviews or feedback

opportunities like team retrospectives to collect

data related to these perceptual measures.

Since these formats are not standardized like

surveys, you will need to index and categorize

the data in order to track progress over time.

Workflow measures may also be collected via

surveys, or your team may opt to ingest the data

directly from workflow tools like your ticketing

system or source control. The benefit of using a

survey to collect workflow data is that you can

simplify data collection by using only one

method. A well-designed survey will provide

accurate data about workflows. Remember,

DORA is based on survey data!

A sample of questions might look like something

like this:

With this data, teams can identify their highest

priority drivers.

What’s important to consider when

using the DevEx framework?

In the section covering SPACE metrics, we

discussed how some leaders may be hesitant to

adopt new ways of thinking, based on the latest

research. DevEx highlights human attitudes and

opinions even more than SPACE, making a

strong recommendation that measures of

experience, satisfaction, and attitude are critical

in order to improve developer productivity.

Page 11

Perception

Workflow

Feedback Loops

How satisfied are you with our
automated testing system?

How long does it take to get a
committed change into
production?

Cognitive Load

How easy is it to understand our
documentation?

How long does it take you to get
an answer to a technical
question?

Flow State

How disruptive is our on-call
rotation?

How many meeting-free days do
you have per week?

To be successful with the DevEx framework, it’s

crucial that your organization has an intention of

using the data to drive impact, and isn’t

collecting data for the singular goal of

performance assessment, or just out of curiosity.

Teams that have been very successful with the

DevEx framework have followed this 4-step

process to improve developer experience and

productivity

 Get feedback from developers to strengthen

your understanding of the factors that

impede developer productivity and degrade

developer experience

 Set a target with the team. Keep this footprint

small: 1-2 goals max for any timeframe.

Choose how you will track progress against

this target

 Drive impact by executing projects and

running experiments to change habits,

processes, and/or tooling

 Measure again to understand if the

challenges have been overcome (use the

same method you used in Step 1, and to

understand where new challenges might be.

Page 12

Page 13

DX Core 4

The DX Core 4 encapsulates DORA, SPACE, and

DevEx. It includes four dimensions—speed,

effectiveness, quality, and business impact—

with key metrics and additional secondary

metrics for each.

The framework provides a focused set of

metrics that work effectively at any sized

organization, and can be augmented with

additional metrics for specific goals.

The DX Core 4 has several features that are

critical for success: counterbalanced measures

to prevent trade-offs, usefulness for discussion

at all organizational levels, fast deployment

within weeks, and a design that avoids fear or

gamification by incorporating the Developer

Experience Index (DXI) along with additional

experience data.

One of the DX Core 4 key metrics, diffs per

engineer, requires caution. We at DX—along with

many leading industry voices—have written

extensively on the dangers and pitfalls of

engineering throughput metrics. We have found,

however, that diffs per FTE is a useful signal

when utilized carefully. Many of the

organizations we work with, and leading

technology companies like Meta, Microsoft, and

Uber, rely on this metric as a key input for

understanding and improving productivity.

Organizations can effectively utilize diffs per

FTE successfully under three preconditions:

first, by counterbalancing with oppositional

metrics like the Developer Experience Index.

Second, by not setting targets or rewards tied to

them. Last, by properly communicating and

rolling out metrics in such a way that does not

result in abuse.

DX Core 4

Key metric

Secondary
metrics

Data collection

Speed

 Diffs per engineer* (PRs or MRs)

*Not at individual level

 Lead tim
 Deployment frequenc
 Perceived rate of delivery

 System
 Self-report

Effectiveness

 Developer Experience Index (DXI)

DXI is a predictive benchmark of
developer experience, developed by DX.

 Time to 10th P
 Ease of deliver
 Regrettable attrition*

*Only at organizational level

 System
 Self-repor
 Experience sampling

Quality

 Change failure rate

 Failed deployment recovery tim
 Number of incidents per enginee
 Security-related metrics

 System
 Self-report

Impact

 % of time spent on new capabilities

 Initiative progress and RO
 Revenue per Engineer
 R&D as % of revenue*

*Only at organizational level

 System
 Self-report

https://getdx.com/research/the-one-number-you-need-to-increase-roi-per-engineer/
https://getdx.com/research/the-one-number-you-need-to-increase-roi-per-engineer/

How do you implement the DX Core 4?

The DX Core 4 metrics are collected through

several methods including system metrics, self-

report, and experience sampling, as listed in the

table on the previous page.

Self-reported metrics, already introduced in this

guide, are best collected through developer

productivity surveys. They provide fast and

comprehensive measurements in areas where

system metrics are unavailable or do not apply.

For example, self-reported metrics are critical

for perceptual measures of developer

experience, as well as useful for collecting data

about software quality that is difficult to

measure objectively.

System metrics provide precise and continuous

data, making them the preferred form of

measurement where feasible. System metrics

work well for capturing metrics such as diffs per

engineer, where data can be easily extracted.

 In other cases, however, getting end-to-end

system data can be difficult, requiring

instrumentation and normalization of data

across disparate tools and teams.

Failed deployment recovery time, for example, is

a metric that we recommend collecting either

through self-report or systems, depending on

the organization. A small startup may be able to

quickly measure using just an issue tracker such

as Jira, whereas a larger organization will likely

need to cross-attribute data across systems in

order to gain end-to-end system visibility. This

can be a lengthy effort, whereas capturing self-

reported data can provide a baseline quickly.

Experience sampling is a third method of

collecting self-reported data from developers

while they are in the flow of work. This provides

targeted data points that can be tied to specific

behaviors or tasks. For example, experience

sampling is a highly effective way of measuring

concrete time savings being achieved through

tools like Copilot.

Page 14

Measurement methods

Method

System metrics

Self-reported metrics

Experience sampling

Benefits

Objective metrics collected in real-time

Rapid data collection and experience metrics

Targeted in-the-moment insights

Challenges

Cross-system visibility and data normalization

Question design, participation rates

Complexity of setup, time collect data

https://martinfowler.com/articles/measuring-developer-productivity-humans.html
https://getdx.com/blog/measuring-generative-ai-on-developer-productivity/

What should you pick?

The DX Core 4 framework incorporates research

and metrics from DORA, SPACE, and DevEx to

give you a streamlined set of metrics that have

been implemented in over 300 companies. The

metrics are focused so that they are easy to

understand, yet still comprehensive enough to

guide decision-making with research-backed

methodologies.

Still, you may find yourself needing to explain

the differences between these frameworks to

your peers and stakeholders, or even answer

questions like “why aren’t we using DORA

metrics?” To answer these questions, help

connect the framework with the outcome

 The DX Core 4 is a unified approach to

measuring developer productivity for

companies looking to increase engineering

efficiency, create capacity for innovation, and

use data to drive improvements

 DORA metrics are best suited for

organizations going through a digital

transformation and adopting widespread use

of DevOps practices.

 The SPACE framework is a useful tool in

developing a holistic approach to defining

and measuring developer productivity

 The DevEx framework focuses on improving

developer productivity and engagement by

measuring aspects of the developer

experience in your organization.

A common misconception is that the DORA,

SPACE, and DevEx frameworks are in

competition with one another. In fact, they

coexist, so it’s possible to use multiple at the

same time (such as using the DX Core 4, which

unifies these frameworks).

SPACE is a broad framework that offers a lens to

evaluate any kind of productivity metric. With

this framework as a basis, DORA and the DevEx

framework both sit on top of space as

implementations of the framework.

To test your own understanding of how these

frameworks connect, consider the four DORA

metrics

 Lead Time to Chang

 Change Failure Rate

 Deployment Frequenc

 Mean Time To Recover (MTTR)/Failed

Deployment Recovery Time

How would you associate these with SPACE

dimensions?

Similarly, you may have noticed that deployment

frequency is featured as a workflow

measurement in the DevEx framework, and also

included as a secondary metric in the DX Core 4

framework. This is an example of where multiple

frameworks overlap.

Page 15

Instead of thinking of each of these frameworks

as mutually exclusive, understand that they

coexist and can be used together.

Let’s explore some common types of companies

and engineering organizations, and what

frameworks are best suited for the intended

outcomes.

Platform Engineering Team

 Platform engineering teams are responsible

for tooling that impacts the work of all

developers in their organization. Without the

insights provided by the DevEx framework,

it's difficult to know what problems are

causing developers the most friction, which

projects to prioritize, and whether their work

is having an impact

 The DX Core 4 framework will help tie

platform engineering initiatives back to

business impact, creating a stronger

argument for dedicating budget.

SMB and Enterpris

 For teams adopting DevOps practices, DORA

will provide valuable measurements and

benchmark

 Organizations looking to increase the

efficiency and effectiveness of their whole

engineering organization will benefit from

the DevEx framework, which will help guide

them to the highest-impact interventions,

leading to a high ROI.

Scaling startu

 As a company grows, definitions of

developer productivity must also evolve. In

early stages, the company may have placed

more value on rapid iteration above all else

as it sought to find product market fit. Now

with teams growing and maturing, other

factors like durability and maintainability

may emerge at the forefront. The SPACE

framework can help engineers and leaders at

scaling startups be intentional about their

definition of developer productivity as their

needs change. DORA may be less useful if

the company has used DevOps practices

from the start.

Individual engineering manage

 Depending on the company size and stage,

engineering managers can benefit from all

frameworks. DORA can inform them of their

team’s delivery capabilities, while SPACE and

DevEx will help them understand root causes

of friction and drag in their software

development processes.

Page 16

Thinking Ahead

Engineering leaders understand that increasing

developer productivity and engagement leads

to better business outcomes. Frameworks like

DORA, SPACE, and DevEx help teams define

productivity and measure it. This gives

engineering organizations clarity into where to

focus and the ability to quantify the impact of

change.

As leaders, it’s important to understand the

cultural impact when introducing any

framework. Developers themselves want to have

a voice when it comes to improving their

productivity, and the latest research highlights

that perceptual measures of productivity – the

developers’ experience – is just as important as

workflow metrics.

Ask yourself these questions when introducing

any metrics framework:

 What are my goals when introducing

metrics

 What will happen once the data is collected

 How will the team collect these metrics, and

what’s the cost of collecting these metrics?

 How am I capturing the developer voice in

my system of metrics?

Page 17

About the author

Laura Tacho is CTO at DX and leads the company’s

executive advisory practice.

