
August 2023

Technology, Media & Telecommunications Practice

Yes, you can measure
software developer
productivity
Measuring, tracking, and benchmarking developer productivity has
long been considered a black box. It doesn’t have to be that way.

This article is a collaborative effort by Chandra Gnanasambandam, Martin Harrysson, Alharith
Hussin, Jason Keovichit, and Shivam Srivastava, representing views from McKinsey’s Digital and
Technology, Media & Telecommunications Practices.

Compared with other critical business functions
such as sales or customer operations, software
development is perennially undermeasured. The
long-held belief by many in tech is that it’s not
possible to do it correctly—and that, in any case,
only trained engineers are knowledgeable enough
to assess the performance of their peers. Yet
that status quo is no longer sustainable. Now that
most companies are becoming (to one degree
or another) software companies, regardless of
industry, leaders need to know they are deploying
their most valuable talent as successfully
as possible.

There is no denying that measuring developer
productivity is difficult. Other functions can
be measured reasonably well, some even with just
a single metric; whereas in software development,
the link between inputs and outputs is considerably
less clear. Software development is also highly
collaborative, complex, and creative work and
requires different metrics for different levels (such
as systems, teams, and individuals). What’s more,
even if there is genuine commitment to track
productivity properly, traditional metrics can require
systems and software that are set up to allow
more nuanced and comprehensive measurement.
For some standard metrics, entire tech stacks
and development pipelines need to be reconfigured
to enable tracking, and putting in place the necessary
instruments and tools to yield meaningful insights

can require significant, long-term investment.
Furthermore, the landscape of software development
is changing quickly as generative AI tools such
as Copilot X and ChatGPT have the potential
to enable developers to complete tasks up to two
times faster.

To help overcome these challenges and make
this critical task more feasible, we developed an
approach to measuring software developer
productivity that is easier to deploy with surveys
or existing data (such as in backlog management
tools). In so doing, we built on the foundation
of existing productivity metrics that industry
leaders have developed over the years, with an
eye toward revealing opportunities for
performance improvements.

This new approach has been implemented at nearly
20 tech, finance, and pharmaceutical companies,
and the initial results are promising. They include
the following improvements:

	— 20 to 30 percent reduction in customer-
reported product defects

	— 20 percent improvement in employee
experience scores

	— 60-percentage-point improvement in customer
satisfaction ratings

Now that most companies are
becoming software companies,
leaders need to know they are
deploying their most valuable talent
as successfully as possible.

2 Yes, you can measure software developer productivity

Leveraging productivity insights
With access to richer productivity data and insights,
leaders can begin to answer pressing questions
about the software engineering talent they fought
so hard to attract and retain, such as the following:

	— What are the impediments to the engineers
working at their best level?

	— How much does culture and organization affect
their ability to produce their best work?

	— How do we know if we’re using their time on
activities that truly drive value?

	— How can we know if we have all the software
engineering talent we need?

Understanding the foundations
To use a sufficiently nuanced system of measuring
developer productivity, it’s essential to understand
the three types of metrics that need to be tracked:
those at the system level, the team level, and the
individual level. Unlike a function such as sales, where
a system-level metric of dollars earned or deals
closed could be used to measure the work of both
teams and individuals, software development
is collaborative in a distinctive way that requires

different lenses. For instance, while deployment
frequency is a perfectly good metric to assess
systems or teams, it depends on all team members
doing their respective tasks and is, therefore, not a
useful way to track individual performance.

Another critical dimension to recognize is what
the various metrics do and do not tell you. For
example, measuring deployment frequency or lead
time for changes can give you a clear view of certain
outcomes, but not of whether an engineering
organization is optimized. And while metrics such
as story points completed or interruptions can
help determine optimization, they require more
investigation to identify improvements that might
be beneficial.

In building our set of metrics, we looked to expand
on the two sets of metrics already developed by
the software industry. The first is DORA metrics,
named for Google’s DevOps research and
assessment team. These are the closest the tech
sector has to a standard, and they are great at
measuring outcomes. When a DORA metric returns
a subpar outcome, it is a signal to investigate what
has gone wrong, which can often involve protracted
sleuthing. For example, if a metric such as deployment
frequency increases or decreases, there can be
multiple causes. Determining what they are and how
to resolve them is often not straightforward.

Our approach seeks to identify what
can be done to improve how products
are delivered and what those
improvements are worth, without the
need for heavy instrumentation.

3Yes, you can measure software developer productivity

Exhibit 1

Web 2023
MeasuringDeveloperProductivity
Exhibit 1 of 2

Focus areas by level

1Google’s DevOps research and assessment team, which developed these outcome metrics.
2Satisfaction and well-being, performance, activity, communication and collaboration, and e�ciency and �ow; GitHub and Microsoft Research developed these
metrics, which aim to look at developer well-being as a measurement at the individual level.

3Nonexhaustive.
4Benchmarks an organization’s technology, working practices, and organizational enablement; see Shivam Srivastava, Kartik Trehan, Dilip Wagle, and Jane
Wang, “Developer Velocity: How software excellence fuels business performance,” McKinsey, Apr 20, 2020.

Adding a focus on opportunities to software developer productivity metrics
can o�er clearer paths to improvement.

McKinsey & Company

System
level

Team
level

Individual
level

DORA1 metrics SPACE2 metrics Opportunity-focused metrics

Outcomes focus
Are you delivering products
satisfactorily?

Optimization focus3
Are you delivering products
in an optimized way?

Opportunities focus
Are there speci�c opportunities to
improve how you deliver products,
and what are they worth?

Deployment frequency
Customer satisfaction
Reliability (uptime)

Code-review timing
Velocity/�ow through
the system

Satisfaction with engineering
system
Inner/outer loop time spent

Lead time for changes
Change failure rate
Time to restore service
Code-review velocity

Story points completed
Hando�s

Quality of documentation
Developer Velocity Index
benchmark4
Contribution analysis

Developer satisfaction
Retention

Interruptions Contribution analysis
Talent capability score

The second set of industry-developed measure
ments is SPACE metrics (satisfaction and well-being,
performance, activity, communication and
collaboration, and efficiency and flow), which GitHub
and Microsoft Research developed to augment
DORA metrics. By adopting an individual lens,
particularly around developer well-being, SPACE
metrics are great at clarifying whether an
engineering organization is optimized. For example,
an increase in interruptions that developers
experience indicates a need for optimization.

On top of these already powerful metrics, our
approach seeks to identify what can be done to

improve how products are delivered and what those
improvements are worth, without the need for
heavy instrumentation. Complementing DORA and
SPACE metrics with opportunity-focused metrics
can create an end-to-end view of software
developer productivity (Exhibit 1).

These opportunity-focused productivity metrics use
a few different lenses to generate a nuanced
view of the complex range of activities involved with
software product development.

Inner/outer loop time spent. To identify specific
areas for improvement, it’s helpful to think of the

4 Yes, you can measure software developer productivity

activities involved in software development as being
arranged in two loops (Exhibit 2). An inner loop
comprises activities directly related to creating the
product: coding, building, and unit testing. An outer
loop comprises other tasks developers must do to
push their code to production: integration, integration
testing, releasing, and deployment. From both a
productivity and personal-experience standpoint,
maximizing the amount of time developers spend in
the inner loop is desirable: building products directly
generates value and is what most developers are
excited to do. Outer-loop activities are seen by most
developers as necessary but generally unsatisfying
chores. Putting time into better tooling and
automation for the outer loop allows developers to
spend more time on inner-loop activities.

Top tech companies aim for developers to spend up
to 70 percent of their time doing inner-loop
activities. For example, one company that had
previously completed a successful agile
transformation learned that its developers,

instead of coding, were spending too much time on
low-value-added tasks such as provisioning
infrastructure, running manual unit tests, and
managing test data. Armed with that insight,
it launched a series of new tools and automation
projects to help with those tasks across the
software development life cycle.

Developer Velocity Index benchmark. The Developer
Velocity Index (DVI) is a survey that measures an
enterprise’s technology, working practices, and
organizational enablement and benchmarks them
against peers. This comparison helps unearth
specific areas of opportunity, whether in backlog
management, testing, or security and compliance.1
For example, one company, well known for its
technological prowess and all-star developers,
sought to define standard working practices more
thoughtfully for cross-team collaboration after
discovering a high amount of dissatisfaction, rework,
and inefficiency reported by developers.

Exhibit 2

1Activities listed are nonexhaustive.

Web 2023
MeasuringDeveloperProductivity
Exhibit 2 of 2

Software development activities

Software development can be broadly divided into two sets, or loops, of tasks;
the less time spent on less ful�lling, outer-loop activities, the better.

McKinsey & Company

Outer
loop1

IntegrateMeetings

Security and
compliance

Deploy
at scale

Inner
loop

Build

Code

Test

1	 To read more about McKinsey’s DVI survey, see Shivam Srivastava, Kartik Trehan, Dilip Wagle, and Jane Wang, “Developer velocity: How
software excellence fuels business performance,” McKinsey, April 20, 2020; and Chandra Gnanasambandam, Neha Jindal, Shivam Srivastava,
and Dilip Wagle, “Developer velocity at work: Key lessons from industry leaders,” McKinsey, February 22, 2021.

5Yes, you can measure software developer productivity

Contribution analysis. Assessing contributions by
individuals to a team’s backlog (starting with data
from backlog management tools such as Jira, and
normalizing data using a proprietary algorithm to
account for nuances) can help surface trends that
inhibit the optimization of that team’s capacity.
This kind of insight can enable team leaders to
manage clear expectations for output and improve
performance as a result. Additionally, it can help
identify opportunities for individual upskilling
or training and rethinking role distribution within a
team (for instance, if a quality assurance tester
has enough work to do). For example, one company
found that its most talented developers were
spending excessive time on noncoding activities
such as design sessions or managing interdepen
dencies across teams. In response, the company
changed its operating model and clarified roles and
responsibilities to enable those highest-value
developers to do what they do best: code. Another
company, after discovering relatively low
contribution from developers new to the
organization, reexamined their onboarding and
personal mentorship program.

Talent capability score. Based on industry standard
capability maps, this score is a summary of the
individual knowledge, skills, and abilities of a
specific organization. Ideally, organizations should
aspire to a “diamond” distribution of proficiency,
with the majority of developers in the middle range
of competency.2 This can surface coaching and
upskilling opportunities, and in extreme cases call
for a rethinking of talent strategy. For example, one
company found a higher concentration of their
developers in the “novice” capability than was ideal.
They deployed personalized learning journeys
based on specific gaps and were able to move
30 percent of their developers to the next level of
expertise within six months.

Avoiding metrics missteps
As valuable as it can be, developer productivity data
can be damaging to organizations if used incorrectly,
so it’s important to avoid certain pitfalls. In our work
we see two main types of missteps occur: misuse of
metrics and failing to move past old mindsets.

Misuse is most common when companies try to
employ overly simple measurements, such as lines
of code produced, or number of code commits
(when developers submit their code to a version
control system). Not only do such simple metrics fail
to generate truly useful insights, they can have
unintended consequences, such as leaders making
inappropriate trade-offs. For example, optimizing
for lead time or deployment frequency can allow
quality to suffer. Focusing on a single metric or too
simple a collection of metrics can also easily
incentivize poor practices; in the case of measuring
commits, for instance, developers may submit
smaller changes more frequently as they seek to
game the system.

To truly benefit from measuring productivity, leaders
and developers alike need to move past the
outdated notion that leaders “cannot” understand
the intricacies of software engineering, or that
engineering is too complex to measure. The
importance of engineering talent to a company’s
success, and the fierce competition for developer
talent in recent years, underscores the need to
acknowledge that software development, like so
many other things, requires measurement to
be improved. Further, attracting and retaining top
software development talent depends in large
part on providing a workplace and tools that allow
engineers to do their best work and encourages
their creativity. Measuring productivity at a system
level enables employers to see hidden friction
points that impede that work and creativity.

2	Klemens Hjartar, Peter Jacobs, Eric Lamarre, and Lars Vinter, “It’s time to reset the IT talent model,” MIT Sloan Management Review,
March 5, 2020.

6 Yes, you can measure software developer productivity

Getting started
The mechanics of building a developer productivity
initiative can seem daunting, but there is no time like
the present to begin to lay the groundwork. The
factors driving the need to elevate the conversation
about software developer productivity to C-level
leaders outweigh the impediments to doing so.

The increase in remote work and its popularity
among developers is one overriding factor.
Developers have long worked in agile teams,
collaborating in the same physical space, and some
technology leaders believe that kind of in-person
teamwork is essential to the job. However, the
digital tools that are so central to their work made it
easy to switch to remote work during the pandemic
lockdowns, and as in most sectors, this shift is hard
to undo. As remote and hybrid working increasingly
becomes the norm, organizations will need to rely on
broad, objective measurements to maintain
confidence in these new working arrangements and
ensure they are steadily improving the function
that could easily determine their future success or
failure. The fact that the markets are now putting
greater emphasis on efficient growth and ROI only
makes it more important than ever to know how
they can optimize the performance of their highly
valued engineering talent.

Another key driver of this need for greater visibility is
the rapid advances in AI-enabled tooling, especially
large-language models such as generative AI. These
are already rapidly changing the way work is done,
which means that measuring software developers’
productivity is only a first step to understanding how
these valuable resources are deployed.

But as critical as developer productivity is
becoming, companies shouldn’t feel they have to
embark on a massive, dramatic overhaul almost

overnight. Instead, they can begin the process with
a number of key steps:

Learn the basics. All C-suite leaders who are not
engineers or who have been in management
for a long time will need a primer on the software
development process and how it is evolving.

Assess your systems. Because developer
productivity has not typically been measured at
the level needed to identify improvement
opportunities, most companies’ tech stacks will
require potentially extensive reconfiguration.
For example, to measure test coverage (the extent
to which areas of code have been adequately
tested), a development team needs to equip their
codebase with a tool that can track code executed
during a test run.

Build a plan. As with most analytics initiatives,
getting lost in mountains of data is a risk. It’s
important to start with one area that you know will
result in a clear path to improvement, such as
identifying friction points and bottlenecks. Be
explicit about the scope of such a plan, as even the
best approaches, no matter how comprehensive,
will not be a silver bullet.

Remember that measuring productivity is
contextual. The point is to look at an entire system
and understand how it can work better by improving
the development environment at the system, team,
or individual level.

No matter the specific approach, measuring
productivity should ideally create transparency and
insights into key improvement areas. Only then
can organizations build specific initiatives to drive
impact for both developer productivity and
experience—impact that will benefit both those
individuals and the company as a whole.

Scan • Download • Personalize

Find more content like this on the

McKinsey Insights App

Designed by McKinsey Global Publishing
Copyright © 2023 McKinsey & Company. All rights reserved.

Chandra Gnanasambandam and Martin Harrysson are senior partners in McKinsey’s Bay Area office, where Alharith
Hussin and Shivam Srivastava are partners; and Jason Keovichit is an associate partner in the New York office.

The authors wish to thank Pedro Garcia, Diana Rodriguez, and Jeremy Schneider for their contributions to this article.

7Yes, you can measure software developer productivity

